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ABSTRACT 

Problems I and II, stated below, are considered. It is shown that the answer 
to I may be negative even if X and Z are finite--dimensional and that the 
answer to II may be negative even if X and Z are separable and T compact. 
Concerning problem II some positive results are also obtained. For example, 
the answer to II is in the affirmative if Xis a conjugate space or an L1 space 
or if X = c or co and Z is separable. 

1. Introduction. In the present note we are concerned with problem (6) of  

Nachbin [11]. We found it convenient to divide the problem into the following 

two parts. 

I. Let Z, W and X be Banach spaces with Z D W and d i m Z / W  = 2. Let T be 

an operator f rom W into X .  Suppose that for  every Y with Z D Y D W and 

dim Y / W  = 1 there is a norm preserving extension of  T f rom Y into X .  Does 

T have a norm preserving extension f r o m  Z into X? 

II.  Let Z, W and X be Banach spaces with Z ~ W and dim Z / W  = 00. Let T 

be a bounded linear operator f r o m  W into X .  Suppose that for  every Y with 

Z ~ Y ~ W and dim Y / W  < ov there is a norm preserving extension of  T f r o m  

Y into X .  Does T have a norm preserving extension f r o m  Z into X?  
In Section 2 we make some simple observations which show that the answer 

to both questions is, in general, in the negative. We shall see, however that in many 

situations the answer to problem II is in the affirmative. In Section 3 we show that 
the answer to II  may be negative even if the spaces Z and X are separable and T is 

compact. The construction used in this section is similar to that used in [8] for 

giving a counterexample to a question closely related to I. 
I wish to express my thanks to Professor S. Kakutani for many valuable dis- 

cussions concerning the subject of this note. 

NOTATIONS. All operators are assumed to be linear and bounded. All Banach 

spaces are assumed to be over the reals (this is only a matter of convenience, all 

the results proved here hold also in the complex case). The unit cell {x; l] x 11 < 1} 

o f a  Banach space X is denoted by Sx. Our notation for special spaces as LI, C(K), 
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m and Co is standard. A Banaeh space X is called a ~3x space if from every Z D X 
there is a projection onto X of norm < ;t. For  the basic facts concerning ~a 
spaces we refer to the book of Day [1, pp. 94-96]. A Banach space X is called 
an Ea space if from every Z D X with dim Z/X  = 1 there is a projection onto X 
of  norm < 2 (Grtinbaum [4]). The projection constant ~ (X )  of X is defined by 

~ (X)  = inf {2; X is a ~ space}. 

In a similar manner the expansion constant E(X) of X is defined. The projection 
constant (or expansion constant) is said to be exact if the inf appearing in its 
definition is attained. We say that the Banach space X has the metric approxi- 
mation property if for every compact set K ~ X and every s > 0 there is an 
operator T from X into itself with a finite-dimensional range satisfying II TII = 1 
and 11 Z x -  x II for x ~ K. This notion was introduced by Grothendieck [2]. 
It is not known whether there exists a Banach space which does not have this 
property. Let f be a functional defined on Y and let X c Y. The restriction o f f  to 
X is denoted by.[ Ix. Similarly we denote restrictions of  operators. 

2. We begin with some positive results 

PROPOSITION 1. The answer to problem II is in the affirmative i f  X is a con- 

jugate Banach space. 

Proof. This is a simple consequence of Tychonoff's theorem and the w* 
compactness of the unit cell of X. The details of  the proof  are identical with those 
given in the proof  of (4) ~(9)  in Theorem 2.2 of  [5]. 

COROLLARY 1. The answer to problem II is in the affirmative i f  there is a 
conjugate space V ~ X and a projection P of norm l from V onto X.  

Proof. We extend T first in a norm preserving manner to an operator from Z 

into V and then apply P. 

REMARK. If  X is an L 1 space then, as well known, there is a projection P with 
norm 1 from X** onto X, and hence the answer to problem II is in the affirmative 
for such X. It is easy to see that in general if X is a Banach space and if there is a 
conjugate space V D X from which there is a projection onto X with norm 2 then 

there is also a projection with norm < 2 from X** onto X. 
As we shall see in the next section the answer to problem II may be negative 

even for compact T. However, it follows easily from Proposition 1 that for compact 

T a slightly weaker version of I! has an affirmative answer. 

COROLLARY 2. Let the assumptions on Z, W, X and T be as in problem II. 
Suppose further that T is compact and that X has the metric approximation 
property. Then for every s > 0 there is an operator i" from Z into X with 

T l l = l ] T [ l a n d ~  T I w -  TI[ --< s" 
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Proof. Since T is a compact  and X has the metric approximation property 
there is an operator To f rom X into itself having a finite-dimensional range B 

such that II To II = 1 and [[ T o T -  zll---< ~. By Proposition 1 ToThas  an extension 
~ f r o m  Z into B with ~ --< I1 TII and this proves the corollary(2). 

We pass now to some counterexamples. We need two simple lemmas, the 
first of  which is well known and therefore we omit  its proof.  

LEMMA 1. Let Z = W be Banach spaces with norm II II and unit cells S z 

and Sw respectively. Let 2 > 1. We define in Z a new norm Ill III by taking as its 
unit cell the closed convex hull of  2 - 1 S z u S w .  Then 

(a) xlllzlll____X zll_>_lllzlll, z 
(b) l l l w l l l = l l w l l  , 
(c) Let Y satisfy Z ~ Y ~ W and let P be a projection f r o m  Y onto W. Then 

IllPll I = 1 i f  and only i f  fl P ll <__ x(3). 
LEMMA 2. Let W be a Banach space and let 2 > 1. There exists a Banach 

space X ~ W having the fol lowing property: Let Z be any Banach space 

containing IV. There is a projection of  norm < 2 f r o m  Z onto W i f  and only i f  
the identity operator f r o m  W into X has a norm preserving extension f r o m  Z 

into X .  

Proof. Let V be a ~ 1 space containing a subspace isometric to ~ ,  and let To 
be an isometry f rom W into V. Let X = V ~ W where the norm is defined by 

Ii (v, w) ll -- max ( l] v][, Ilw U/x). Let 7"1 be the identity operator  of  W and let T 
f rom W into X be defined by Tw = (To w, Tlw). T is an isometry. Let now Z be any 
space containing IV. Since V is a ~ t  space To has a norm preserving extension 

f rom Z into V. 7"1 has an extension with norm ~/from Z into W if  and only if 
there is a projection of  norm ~/from Z onto W. Therefore T has a norm preserving 
extension f rom Z into X if and only if there is a projection of  norm < 2 f rom Z 
onto W. This concludes the proof  of  the lemma (we identify W with the sub- 
space T W  of  X). 

Let W be a Banach space such that  ~3(W) > E(W).  I t  may  happen that  f rom 
every Z ~ W with d i m Z / W  = 2 there is a projection with norm < E(W)  onto W 
(take for example W --- Co). However this seems to be an exceptional case. We 
do not know of general results in this direction but it is easy to give examples. 

For  instance it is not difficult to construct a 4-dimensional space Z containing 

the 2-dimensional inner product space W such that there is no projection f rom Z 

(2) Actually, since [[ToTI[ may be smaller than IITI], we apply here the following version of 
Proposition 1. Let Z ~ W and X be Banach spaces with X being a conjugate space. Let T be an 
operator from W into X and let 2 _> IITII be given. If for every Y with Z ~ Y ~ W and dim 
Y/W < ~ there is an extension of T from Yinto Xwith norm =< 2, then there is also an extension 
of T from Zinto Xwith norm __< 2. The proof of this assertion is the same as that of Proposition 1. 

(3) Ill PHI = sublll ey III taken over a l l y  with III y Iii = 1. 
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onto W with norm < E(W) ( =  2/~/3, cf. Griinbaum [3], [4]) .Put  2o = inf{ II P II; 
P is a projection from Z onto W}. By Lemmas 1 and 2 (with 2 satisfying 
E(W) =< 2 </lo) we obtain the following 

(i) There exist Banach spaces Z m W with dimZ = 4, dim W = 2 such that 

there is no projection of norm l f rom Z onto W but for  every 3-dimensional Y 
with Z ~ Y ~ W there is a projection of norm l f rom Y onto W. 

(ii) There exist finite dimensional Banach spaces Z, W and X with Z ~ W, 

X m W, d imZ = 4 and dimW = 2 such that the identity operator of W has a 
norm preserving extension from every 3-dimensional Y, containing IF, into X 

but there is no such extension from Z into X.  

That in (ii) also X may be taken to be finite dimensional follows from the fact 
that the property of the 2-dimensional inner product space described above is 
shared also by 2-dimensional spaces sufficiently close to it. So we may take as 
W a 2-dimensional space whose unit cell is a regular polygon with sut~ciently 
many sides. For  such a W the space X constructed in Lemma 2 may be taken to 
be finite-dimensional. 

These examples show that the answer to problem I is, in general, negative. 
By using the fact that there is no projection from m onto Co but that for every 
seperable Y ~ Co there is a projection of  norm < 2 from Y onto c o (Sobczyk 
[12]), we obtain from Lemmas 1 and 2 similar counterexamples to problem II. 

It is interesting to compare these examples with the following, well known, 
result (this result motivated the question of  Nachbin considered here). Let X 
be a Banach space. I f  E(X) = 1 and is exact then ~3(X)= 1 and is exact (this 
result holds also without the assumption of  the exactness of E(X),  cf. [6]). We 
reformulate this result as follows. Let T be an isometry from IF onto X. Let 
Z ~ W. If  for every Y ~ Wwith dim Y / W  = 1 T has a norm preserving extension 
from Y into X then T has also a norm preserving extension from Z into X. 

The examples given above show that this is no longer true if we assume only 
that T is an isometry into or if we require only that T has a norm preserving 

extension from every Y with Z m Y m W and dim Y / W  = 1 (or even from Y with 

Z ~ Y ~ W and dim Y / W  < ~ ) .  

Many results, showing that in certain special situations the answer to I or II or 
closely related questions is positive, are contained implicitly or follow easily from 
relations between certain extension properties and from characterization theorems 
proved in [6], [7], [9] and [10]. We give here only one example to illustrate this 

point. 

Proposition 2. Let X be a Banach space such that Sx* is w* sequentially 

compact (in particular X may be any separable or reflexive space) and let 

W c X.  1f for  every Y ~ W with dim Y / W  < ~ there is an operator with norm 
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l f rom  Y into X whose restriction to W is the identity then the same is true for  
every Y ~ W (without any restriction on Y /W) .  

Proof. By Theorem 3 of [9] it follows that the assumptions in Proposition 2 
(even if we consider only Y D W with dim Y / W  = 1) imply that W is finite-dimen- 
sional and its unit cell is a polyhedron. Hence there is a finite-dimensional ~1 
space Yo containing W. Let T O be an operator with norm 1 from ¥o into X whose 
restriction to W is the identity. Let Y be any space containing W. There is an 
operator Tt with norm 1 from Y into Yo whose restriction to W is the identity. 
T = ToTI is the required operator from Y into X. 

REMARKS. (a). Example (ii) above shows that Proposition 2 no longer holds if 
we require only that for every Y-~ W with dim Y / W  = 1 there is an operator 
with norm 1 from Y to X whose restriction to W is the identity. 

(b) Lemma 2 and the result of Sobczyk mentioned above show that we cannot 
discard the requirement on Sx* in the statement of  Proposition 2. 

3. The counterexamples to problem II given in the previous section were 
based on the theorem of  Sobczyk and therefore the space Z had to be non sep- 
arable. We shall now construct an example in which all the spaces are separable. 
We introduce first some notations. As mentioned in the introduction we use a 
construction similar to that in [8]. The notations will be the same as in I-8] but 
the arguments used in the proofs and the purposes of the examples are quite 
different. 

Let /~ be the compact metric space of  all the ordinals < 092 in the order 
topology(4). Let K,,, rn = 1, 2,. . .  be the subset o f / ~  defined by 

(1)  Km = { ~ ; ( m  - 1)co < ~ < mo~}. 

Clearly K - { c o  2} = L)~=tK,,(5). Let N denote the set of positive integers. 
Let h(0t) be the function on /~ defined by 

S 1 if ot = moo + 2j - 1, rn = 0,1, 2, ..., j = 1, 2, ..- 
h(ct) 

- i otherwise. 

Further letf , ,  n ~ N be a sequence of  continuous functions on J~ defined by 

- 1  i f ~ K 2 m _  t m = l , 2 , . . - , n  

(3) f,(0t) = 1 otherwise. 

Let V be the space of  all the bounded real-valued functions on (the abstract set) 
/~ x N, with the usual vector operations and with the sup as norm. Let Xo be the 

(4) ~o denotes, as usual, the ordinal number of the well-ordered set of the integers. 
(5) {o~2} denotes the set consisting of the single point to2. We do not consider here 0 as an 

ordinal number. 
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subspace of  V consisting of all the functions v satisfying v(~, n) = v(~t, 1) for every 
E/~ and n s N, and v(~, 1) e C(/~). The mapping To from Xo onto C( /~) defined by 

(4) Tox(~ ) = x(~, 1) x e Xo,  ~t ~ /~  

is clearly an isometry. Let Zo be the closed subspace of V spanned by Xo and the 
functions 

(5) Zo(~, n) = f . (~ )  ~ E g ,  n ~ N 

and 

(6) zk(~ ,n)=~k, ,h(~  ) ~ e F . ,  H E N ,  k = l , 2 , . . . ( 6 )  

With these notations we have the following 

LEMMA 3. (a) There  is no projection f r o m  Z o onto X o with norm < 5•4, 

(b) For every Y with Z o D Y ~ X o and d i m Y / X  o < ~ ,  and for] every 

> 0 there is a projection o f  norm < 1 + e f r o m  Y onto X o. 

Proof. (a) Let P be a projection from Z o onto X o with II P H = 4. Let g , ,  
m = 1,2, . . .  be the characteristic function of  the set K2m x N .  g m e X o  and 

II 2 g . -  zo II = 1 for every m. Hence I12g . -  Pzo II --< 2 and thus Pzo(~t,n ) >= 2 - 2 
for 0t LJm = 1 K2m and n s N. By continuity of  Pzo(~, 1) we obtain 

(7) Pzo(09 2,1) > 2 - 4. 

Let now gmj,  m , j  = 1,2, . . .  denote the characteristic function of  the set 

{ m -  1 09 + j} x N. All the gmj belong to Xo and we have 

[Izo+zl+z~+...+z.+2g~.+l,2~ll=2 m,j  = 1,2,.-. 

Hence 

(Pz  o + z 1 + ... + Zm)(a,n) < - 2 + 24 for ~t = 2m09 + 2j, 

and by continuity 

(8) P(z  o + z 1 + ... + z,,)((2m + 2)09, I) -<_ - 2 + 24. 

With the same gmj  as above we have also 

tIZ1 + Z 2 + " "  +Zm--gk,2j+l l]  = 1 ,  

As above, we obtain from this that 

(9) e ( z l  + z2 + "" + z,,)(k09,1) > 1 - 2 

m , j , k = l , 2 , . . .  

k , m  = 1,2,. . .  

(~) ~. k = 1 if n = k and 0 otherwise. 
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By (8) and (9) Pzo((2m+l)og, l ) <  - 3 +  32 for every m and hence 
Pzo(CO 2,1) < - 3 + 32. This together with (7) implies that 2 ~ 5/4. 

We turn to the proof of  (b). Assume first that Y is the span of  Xo and k 
for some finite k. The operator Tkz(~) = z(~t, k + 1) maps Y into C(/~) and is 
clearly a norm preserving extension of To. Hence there is a projection of norm 1 
from Y onto Xo. Let now Y be a general subspace of Zo containing Xo as a sub- 
space of finite deficiency. That is Y = sp {X o, bl, "..bk} with k = dim Y[Xo and 
bi ~ Zo. There is an M < ~ such that 

k k 

z 12,1  Mltx ÷ •2,b,l[, x s X o , 2 i r e a l .  
i = 1  i = l  

Let b~, i = 1,..-, k be in the dense subspace of Zo spanned (linearly not topo- 
logically) by X and {zj}j°°_- o, such that H b, - bi I[ < e/M. By what we have 
already shown there is a projection P of norm 1 from the subspace of Zo spanned 
by Xo and {~/}~= 1 onto Xo. Define now P from Y onto Xo by 

P(x + gi2ibi) = P(x + Ei2i[~i). 

We have(7) 

II P(x + ~iAib,)II =< II x ÷ I1 :-< 

< Ix  + ~,2,bifl + Z,12,1/M Z(1 ÷  )llx ÷ ~,2,b, II • 

Hence P is a projection of norm < 1 + e. 

REMARKS. 1. The question whether and when we can take 8 = 0 in (b) was 
treated in I-81. 

2. It is clear that a construction similar to that done in Lemma 3 can be done 
for every compact metric K with (K') '  # ¢(s). If  we use for these K exactly the 
same construction (with the obvious modification obtained by replacing the 
characteristic functions of  the sets Km by suitable Urysolm functions) we will 
get of  course the same constant (that is 5/4) in (a). It  seems likely that if we consider 
the spaces of ordinals < co k it is possible to construct similar examples with 5/4 
replaced by a number Tk tending to ~ with k, and thus by taking direct sums we 
would get an example in which 5/4 can be replaced by ~ (i.e. in which there is no 
bounded projection at all from Zo into Xo). We have, however, not worked out 
the details of such constructions. 

Combining Lemma 3 (cf. also remark 2) with Lemma 1 we get 

(7) This inequality shows also that P is well defined, i.e. that no non trivial combination 
of the b~ belongs to X0. 

(s) K'  denotes the set of limiting points of K. 
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PROPOSITION 3. There is a 2 > 1 such that for  every compact metric K with 

(K ' ) '  ~ ¢ there exists a separable Z ~ C(K) satisfying 

(a) There is no projection of  norm < 2 f r o m  Z onto C(K). 
(b) From every Y with Z ~ Y ~ C(K) and dim Y/C(K)  < oo there is a pro- 

jection of  norm l f r o m  Y onto C(K). 
Clearly, every ;t < 5/4 will do. Proposition 3 does not hold if (K ' ) '  = ¢. Indeed, 

we have 

PROPOSITION 4. In problem II let X = C(K) with K compact metric. The 

answer to the problem is in the affirmative for  every separable Z and W and for  

every 7" i f  and only i f  (K ' ) '  = ¢. 

Proof. That  the answer to II may be negative even for separable Z if (K ' ) '  ~ ¢ 
follows from Proposition 3. That the answer is always in the affirmative if 
(K ' ) '  = ¢ is is an easy consequence of 

LEMMA 4. Let Z D W be separable Banach spaces and let {f.}~=, be a 

w* convergent sequence in Sw*. Suppose that for  every Y with Z ~ Y ~ W and 
f ~ , ,  ~oo  dim Y / W <  oo there is a w* convergent sequence ty .s~=t  in S t *  such that 

, , oo 
Ynlw = f .  for  every n. Then there is a w* convergent sequence {z.}~= i in Sz* 
such that * z. lw = fn for  every n. 

Proof. Let Z=sp(W,{z~}~°=l) and put Ym=sp(W,{zi}i~=~), m = l , 2 , . . . .  
Let . oo {Ym,,}~=l s Sr'., be a w* convergent sequence (to y*, say) such that 
Ym.~* I v/ = f~ .  By the diagonal method we choose a sequence mj such that 
lim~ * -,o~y.,j(zi) exists for every i(9), and call this limit z*(z~). Next we choose an 

cO m oo m oo o f {  j}j=l increasing sequence {nk}k = 1 of  integers and a subsequence { k}k = 1 
(for simplicity of notation we do not add another index) such that 

I y*.k(z~) - z*(z~)l  < k -  for i < k  

I * Z * 1 Y,.k,.( i) - y~,~(z,)l < k -  for n > n k, i < k. 

Let now z. * be any norm preserving extension of  * = Ymk,n to Z if nk < n < nk+l, 
k = 1, It is easily verified that the sequence ~z*/~ 1 has the required properties. " ' "  " L n J n  = 

We conclude this paper by showing that the answer to problem II may be neg- 
ative even for operators with a finite-dimensional range (and hence, in particular, 

for  compact operators). 

PROPOSITION 5. There exist separable Banach spaces Z, W and X with 

Z D W, X ~ W and dim W = 2 such that 

(9) Ymj (zt) IS defined if mj >= i. 
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(a) There  is no operator with norm 1 f r o m  Z into X whose restriction to 

W is the identi ty.  

(b) For every f in i te -d imensional  Y with Z ~ Y ~ W there is an operator 

with norm l f r o m  Y into X whose restriction to W is the identi ty.  

Proof. Let  X = C [0, n/2] and let Z = X be the space constructed in Proposi-  

tion 3. Let W be the subspace o f  X spanned by wl(t)  = cos t and w2(t) = sint.  

We prove (b) first. Let Y be finite-dimensional with Z = Y = W. Let Yo be the 

subspace o f  Z spanned by X and Y. By Proposi t ion 3 (b) there is a projection o f  

n o r m  1 f rom Y0 onto  X. The restriction o f  this projection to Y has the required 

properties. 

P r o o f  o f  (a). For  t~  [0 ,n /2]  let tkt E X* be defined by (or(x)= x(t),  x ~ X .  

For  every t there is a w t ~ W  such that  w t ( t ) = l  and [ w t ( s ) [ < l  for  s ¢ t .  I t  

follows that  ~b t is the unique norm preserving extension o f  ~bt I w into X. Suppose 
there were an opera tor  T with no rm 1 f rom Z into X whose restriction to W is the 

identity. Let  z* = T*(o t, t ~ [0, 7r/2]. We have I1 z* 11 -<- 1 and z* I w = (T*q~t) lw = ~bt I w 
(since T I w is the identity). It follows that  zt* I x is a no rm preserving extension 

o f  ~b, I w and hence, as observed above, z* I x = 4~t • Let now x ~ X. Then 

Tx( t )  = ~bt(Tx) = Tft(x) = z*(x)  = zt*l x(X) = ~,(x)  = x(t).  

Thus T x  = x, in other  words T is a projection and this contradicts  Proposi t ion 

3 (a). 
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